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Exact solutions of coupled scalar field equations 
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Received 1 1  May 1989 

Abstract. Exact analytical solutions of a generic system of coupled ordinary differential 
equations for a pair of real scalar fields have been explicitly obtained. The equations may 
be considered to be the stationary form of the coupled time-dependent Schrodinger- 
Boussinesq (or Korteweg-de Vries) equations. The generic equations have six free para- 
meters whereas it has been possible to obtain exact solutions valid on a fi\e-dimensional 
hypersurface in six-dimensional parameter space using a technique developed by Varma 
and Rao. While the solution for the variable of the Boussinesq (or  Korteweg-de Vries) 
equation always has a symmetric structure, both symmetric and antisymmetric solutions 
are possible for the variable of the Schrodinger equation. The results are applied to an 
example dealing with the stationary propagation of coupled non-linear upper-hybrid and 
magnetosonic waves in magnetised plasmas. 

1. Introduction 

Coupled second-order ordinary differential equations for a pair of real scalar fields 
occur in many branches of physics. For example, in particle physics, the relativistic 
quantum field theories in 1 + 1 dimensions for finite-energy localised fields lead to a 
set of non-linear equations for a pair of scalar fields, say p and (T [ l ] .  On the other 
hand, in plasma physics, the non-linear development of the instability associated with 
the envelope of an high-frequency wave field ( E )  coupled to an appropriate low- 
frequency wave field ( 4 )  is governed by a pair of coupled equations [2]. An outstanding 
mathematical problem associated with such non-linear equations is to obtain their 
exact analytical solutions valid in the entire allowed space spanned by the free 
parameters occurring in the equations. In the case of (p ,  U )  fields, the relevant equations 
have three free parameters whereas it has been possible to obtain their exact solutions 
only for some specific numerical values of some of the parameters [3] or, at the most, 
with two of the parameters being free, in which case the third parameter is self- 
consistently determined [4]. On the other hand, when E and C#J correspond, respec- 
tively, to the Langmuir and ion-acoustic wave fields, the governing equations have two 
free parameters and Nishikawa et a1 [5] obtained exact localised solutions valid on a 
straight line in the two-dimensional parameter space. Similar governing equations, 
but with more free parameters, occur in other problems dealing with modulational 
instability of, for instance, coupled electromagnetic-ion acoustic waves [ 6 ] ,  upper 
hybrid-magnetosonic waves [7], etc. I t  is, therefore, necessary to obtain the exact 
solutions of a generic system of equations with as many free parameters as possible. 
Such a generic system for the (p, v) fields [4] consists of eight free parameters whereas 
the equations for the ( E ,  4 )  fields [6] contain seven free parameters. However, i t  has 
not been possible so far to obtain the exact solutions in either case. 
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We investigate, in this paper, the existence of analytic solutions for a generic system 
of equations for the E and 4 fields and, in particular, obtain their exact solutions 
having as many as five parameters free. These equations occur in all modulational 
problems in plasma physics when the dynamics of the low-frequency motion is 
described in terms of a non-linear equation like the (driven) Boussinesq equation (for 
bidirectional propagation) or the (driven) Korteweg-de Vries equation (for unidirec- 
tional propagation). I n  the stationary frame, these equations give rise to the equation 
for the low-frequency field ( 4 ) .  On the other hand, the equation for the high-frequency 
field envelope ( E )  is obtained from a Schrodinger-like equation where the low- 
frequency field occurs as a potential [ 2 ] .  The coupling between the two equations 
arises due to a term corresponding to the (non-linear) ponderomotive force [8] of the 
high-frequency wave field. 

The equations are solved using a method of solution developed by Varma and Rao 
[9] (see Rao and Varma [lo] for more details). The method, as it exists, is applicable 
to any pair of second-order equations not containing terms involving the first derivatives 
of the dependent variables but admitting a 'Hamiltonian' which is a constant of motion. 
The equations can be thought of as the equations of motion for a classical particle in 
a two-dimensional conservative potential which, for complete integrability, requires 
the existence of two constants of motion. The search for the second constant of motion 
is made easier by obtaining a governing equation for the trajectory of the particle in 
the ( E ,  4 )  space where the independent variable occurs only as a parameter. In the 
case of the generic equations considered below, it turns out that the second constant 
of motion is just a quadratic polynomial in 4 for E' which enables us to obtain the 
exact solutions for E and 4. 

The paper is organised as follows. In the next section, we write down the generic 
equations and discuss their properties. We obtain in 0 3 different types of exact solutions 
which are valid for different parameter regimes. Some special cases of the generic 
equations are discussed in 5 4. Section 5 is devoted to an application 0: these results 
to the Schrodinger-Boussinesq (or Korteweg-de Vries) system that governs the (station- 
ary) propagation of coupled upper-hybrid and magnetosonic waves in magnetised 
plasmas. A summary of the results and some general remarks are given in (3 6 .  

2. Generic equations 

Consider the system of equations 

where E and 4 are real fields, 5 is the (real) independent variable and all the other 
remaining quantities are free parameters. While the parameter p can be taken, without 
any loss of generality, to be equal to unity, we explicitly retain the parameter A so 
that the singular case A = O  can be easily considered. Thus, the system of equations 
has six free parameters. ( A  derivation of (1) and ( 2 )  from the coupled time-dependent 
Schrodinger-Boussinesq (or Korteweg-de Vries) system is given in the appendix.) By 
inspection, it follows that the equations are invariant under the transformations ( i )  
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(-, -5, (ii) E + - E ,  and (iii) 5-, 5+ C, where C is a constant. Furthermore, the 
equations can be derived from a Lagrangian 

where, 

V (  E, 4 )  = - ( d ,  b ,  E’ + fbzdIc$’ + f b , d , ~ $ ~  + b2d34E 2 ,  (4) 

represents the two-dimensional effective potential for the motion of a classical particle 
with two degrees of freedom, namely E and 4 when 5 is treated as the time variable. 
If  7~~ and 7~~ denote, respectively, the conjugate momenta corresponding to E and 
4, we obtain 

and the Hamiltonian 

which is an ‘integral of motion’ since the ‘time’ variable (5) does not explicitly appear 
in the Lagrangian ( L ) .  

I t  is well known [ l l ]  in classical dynamics that a system with two degrees of 
freedom is completely integrable if it possesses two integrals of motion which are in 
involution with each other. In the present case, this requires the existence of another 
integral of motion, in addition to the Hamiltonian ( H ) .  In the next section, we look 
for the second integral by deriving an equation for the trajectory of the system in the 
( E ,  4 )  space. 

3. Exact analytical solutions 

The independent variable 5 in (1) and ( 2 )  can be eliminated using (6) to yield an 
equation for E in terms of 4 only [9, lo]. Since (1) and ( 2 )  are invariant under E + -E ,  
we define a new variable $ = E* and obtain 

Equation ( 7 )  determines the evolution of the system in the (+, 4 )  space with 6 acting 
as a parameter along the trajectories. Alternatively, any solution of ( 7 )  is also an 
implicit solution of the generic equations (1) and ( 2 ) ,  and is an integral of motion for 
the coupled equations. 
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Since the variable C#I occurs as a polynomial in the coefficients of ( 7 ) ,  we seek a 
solution of the form 

X 

c L =  c 
n = o  

where the coefficients a, which are functions of the  free parameters, are to be determined 
self-consistently. To this end, we substitute (11) into (7)  and equate the coefficients 
of like powers of 4 to zero. For localised boundary conditions 

the coefficient a, is identically equal to zero. On the other hand, all the higher 
coefficients (U, , ,  n > 0) are uniquely and  explicitly determined in terms of the free 
parameters as solutions of first-order algebraic equations for every n. In particular, 
the coefficients a ,  and a2 are given by 

1 
U ,  =- (4Abl -Pd,) 

Pd, 

Similarly, the remaining coefficients ( n  > 2) can be easily obtained. 
However, for parameter values satisfying the relation 

pd, b, - 2b,(3pd, - Ab,) = 0 (15) 

it can be shown that ( i )  all the coefficients a,, n 3 3, are identically zero, and (ii) the 
coefficient of each power of d in (7)  is also zero. This implies that the relation 

* = a , 4  + a*4? (16) 

is an  exact solution of the trajectory (7).  The coefficients a ,  and a, given by (13) and 
(14) can be simplified using (15)  to yield 

b2 
661 

a1 = - a ,  . 

The quantity in (161, namely 

can be considered as an  integral of motion for the coupled system of (1) and  ( 2 ) .  
Furthermore, the Poisson bracket between G and H, namely 

[ G , H ] =  1 (-----) dG dH d H  dG 
r = E . d  ax aT, ax aT, 

is identically zero, implying that the two integrals are in involution. This proves the 
complete integrability of the generic system (1 j and ( 2 )  for the case when the free 
parameters satisfy the supplementary relation (15). 
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Explicit solutions for E ( ( )  and 4([) can be readily obtained by using (16) in (2)  
which becomes 

A d 2 4 / d e 2  = ( d ,  + d , a l ) 4  + (d2+ d3a2)42 .  

4(5) = 40 s e c h ” d 5 -  50) l  

(21) 

(22) 

where 40= -6bl /bz,  p = (bl//3)1’2 and to is a constant of integration. The solution 
for E (6) is obtained from (16) and (22) as 

(23) 

For localised solutions satisfying the boundary conditions ( 121, one obtains 

E ( [ )  = *Eo s e c h [ ~ ( 5 - 5 ~ ) 1  tanhrtL(5- 5d1 
where 

In order that the solutions are localised, it is necessary that the parameters satisfy the 
inequalities 

Clearly, while the solution E (  6) is antisymmetric with respect to € = 5,) for any values 
of the parameters, the solution @(() always has a symmetric structure. 

The solutions (22) and  (23) contain five free parameters. We have thus obtained 
exact localised solutions of (1) and  (2) valid on a five-dimensional hypersurface in 
the six-dimensional parameter space. The solutions reported earlier for coupled Lang- 
muir-ion acoustic [ 5 ] ,  electromagnetic-ion acoustic [6] and upper hybrid-magneto- 
sonic [ 7 ]  waves follow directly as special cases of the solutions (22) and (23). 

The basic equations (1) and (2) admit a new class of symmetric solutions for E (5)  
as well as 4(5) which, to our knowledge, have not been reported in the literature 
earlier. Following the procedure outlined above, it can be shown that, for parameter 
values satisfying the equation 

3Abz - pd2 0 (26) 
all the coefficients a, in (11) are identically zero for n >  1 with a ,  given by (13). 
Furthermore, the coefficients of successive powers of 4 in (7) are also exactly balanced. 
The remaining steps to construct the explicit solutions are straightforward, resulting 
in the solutions 

(27) 

(28) 

E(&) = *Eo sech[P(C- €011 

4(5) = 40 s e c h 2 b ( 5 -  €011 

where 

40 = -2 b l /  b2 . 
In order that the solutions are consistent with the localised boundary conditions (12), 
the various parameters should satisfy 
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In the following, we consider some special cases of (1 )  and (2) which are often 
encountered in the study of envelope waves in plasmas. 

4. Some special cases 

4.1. d2 = 0 

In this case, (2) reduces to 

A d’q5/de2 = d ,  4 + d3 E’ 

which is a linear equation in  6 but is coupled to (1) through the non-linear term d,E’. 
The solutions of (1) and (31) are obtained from (22) and (23) as 

where the various parameters satisfy the supplementary relation: 

p d ,  + 2Abl = 0. (34) 

Solutions (32) and (33) are structurally similar to those obtained in the general case 
when d 2 # 0 .  Thus, it follows that the non-linearity in (2) is not essential in  order 
to have antisymmetric solutions for the E field. (It  may be noted that this is contrary 
to the commonly held view that such solutions arise solely due to the presence of the 
d2  term in (2) [5,12]. 

4.2. A = 0 

For this case, (2) becomes an algebraic equation: 

d2q5’+ d, q5 + d, E’ = 0 (35) 

which is coupled to (1). However, it turns out that the coefficients a ,  and a,, as given 
by (13) and (14), are still valid even though in the limit A =0,  (2) is singular! For, 
using the expressions for a, and a? with A = 0 in (1 l ) ,  one obtains just (35). Solving 
(35) for 6 in terms of E’ 

which, together with ( l ) ,  leads to 

where the constant of integration has been evaluated using the condition that dE/d,$ = 0 
whenever E’= d:/4dzd3, and 
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Equation (36) can easily be written i n  a standard form which admits solutions in t e r m  
of Jacobian elliptic functions [ 131. 

However, particularly simple solutions exist for qdl  = 21, namely 

E = = Eo sech [ p ( f - to 11 tan h[ p ( f - 6,) I (38) 

where 

Both the solutions (38) exist for either value of qd,. For qdl  = -1, i.e. bzd, = 6bld2, 
4 ( & )  is obtained as 

(39) 

It may be noted that the solutions (38) and  (39) follow also from the solutions (22) 
and  (23) in the limit h = O  even though, as mentioned earlier, ( 2 )  is singular in that 
limit. On the other hand, for q d , = + l ,  i.e. 5b2d, = 6 b , d 2 ,  4([) is given by 

dl 
d2 

+ ( ( I =  --sech’[(b,lp)’ ‘(5-t0)1. 

Both the solutions (39) and  (40) are symmetric with respect to 5 = 5”. 
In the next section, we apply the above results to the case of coupled Schrodinger- 

Boussinesq equations which govern the (stationary) propagation of non-linear upper- 
hybrid and  magnetosonic waves in a magnetised plasma. 

5. An example: coupled Schrodinger-Boussinesq equations 

5.1. Basic equations 

The bidirectional near-magnetosonic propagation of upper-hybrid waves of frequency 
wo and wavenumber k,  coupled to the magnetosonic waves in a homogeneous mag- 
netised plasma is governed [7] by a Schrodinger-like equation, namely 

which is coupled to the (driven) Boussinesq equation: 

a’N $ N  , a J N  a’ a’ 
-- Vi,  y - P - 7 -  a ’ y  ( N ’ )  = q 7 7  ( E E ” ) .  
a t2  ax- ax ax- ax- 

In (41) and  (42), E(x,  t )  is the complex envelope of the upper-hybrid have  electric 
field normalised with respect to (16~n,T, ) ’  ’, N is the perturbed number density 
(in the low-frequency response) normalised with respect to no, x and t are, 
respectively, the space and time variables, and the asterisk denotes complex 
conjugation. The following notations are used in ( 1 )  and (2):  Vg=koDo,  

( ~ W f e O + n f o ) / ( w ~ , ” + . R ~ , ) ,  V’,= V i + C i ,  p =  VAc/wpeo, a2=(3V,+2C;) /2  and q =  
w ~ ~ C ~ / W ~ ~ ~ ~ .  The remaining notations are standard [ 7 ]  and the subscript ‘0’ denotes 
equilibrium quantities. I n  the linear limit without modulations, (41) and (42) give, 

Dn=3wfeoU~, (w2pe”-3 .n fo ) -1 /w~o ,  = U , , - W H O - D ~ ~ ; / ~ ,  “io7= ~ f , o + . R f o ,  p = 
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respectively, the well known dispersion relations for the upper-hybrid and magneto- 
sonic waves in the long wavelength limit [8, 141. 

Looking for stationary solutions for E and N ,  we define (cf the appendix) 

where 6 = x -  Mt and E ( & )  is real. The parameter M determines the speed of the 
stationary envelope wave. Using ( 1 3 )  in ( 4 1 )  and (421, one obtains 

Do d'E/d[' = AE + 2 p u H o N E  ( 4 4 )  

where A = 26 - 2x + ( M '  - V i ) /  Do accounts for the total non-linear shift in frequency 
and  wavenumber, ti = d T / d t  denotes the frequency shift, and 

p' d 2 N / d t 2  = -( V', - M ' ) N  - a 2 N ' -  ,,'E2 ( 4 5 )  

which is coupled to ( 4 4 )  by the last term. 

5.2. Exact solutions 

Equations ( 4 4 )  and ( 4 5 )  are in the standard form (cf ( 1 )  and ( 2 ) ) .  Using the results 
of § 3 ,  their exact localised solutions satisfying boundary conditions similar to ( 1 2 )  
can easily be obtained. For the case when the various parameters satisfy the relation 

the solutions are 

where 

3A 
N " = -  K = ( A / D , ) '  ' 

PwHO 

( 4 9 )  

and the constant of integration to is taken, without any loss of generality, to be zero. 
The total electric field is then given by 

E ( x ,  t ) = E ( ( ) e x p [ i ( v x + t i t ) ]  (50) 

where v = ( M  - V, ) /D , .  
Clearly, while the wave envelope E(.$)  is antisymmetric with respect to the centre 

( 6  = 0), the perturbed number density N ( 6 )  has a symmetric structure. Equation ( 4 6 )  
indicates that both super-magnetosonic ( M  > V ,  ) as well as sub-magnetosonic (A4 < 
V,)  solitons are possible. Since K should be real, it follows that for positive (negative) 
dispersion of upper-hybrid waves, i.e. D > 0 ( D  < O), the solitons are associated with 
rarefaction (compressional) density perturbations moving with sub-magnetosonic 
(super-magnetosonic) speeds. 
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The class of symmetric solutions for both E (5) and N ( 6 )  are obtained for parameter 

6 p ’ p . 0 ~ ~ +  Do#’ = 0. (51) 

values such that 

The exact solutions in this case are 

E ( , $ )  = * E o  SeCh(K,$) 

N (  5) = No sech2( ~ 5 )  
where 

(6A )“ ’p 
Eo=- [Do( M’ - V‘,) - 4AP’]’’* 

DOU77 
(54) 

A 

CLW H0 
N 0 -  K = ( A / D , , ) ’ ; ~ .  

Since (51) requires Do< 0, K is real only for A < 0. This implies that, unlike the previous 
case, only compressional ( N  > 0) density perturbations are possible. 

The coupled equations (44) and (45) admit, as pointed out for the generic equations, 
antisymmetric solutions for E ( [ )  even when the non-linear term in N on the right-hand 
side of (45) does not exist, i.e. when the low-frequency (magnetosonic) dynamics is 
governed by a linear Boussinesq equation driven by the non-linear ponderomotive 
force. The corresponding results are obtained from (46)-(49) by formally letting the 
parameter a to be equal to zero. Clearly, the solutions for E ( , $ )  and N ( , $ )  d o  not 
change qualitatively. The amplitude E,, is given in the present case by 

which requires Do>O. From (49), it follows that A > O  and No<O which, together 
with (46), yield M 2  < V’, , Comparing these results with the results following from 
(46)-(49), we conclude that the N’ non-linear term in (45) is responsible for driving 
the compressional ( N  > 0) and super-magnetosonic ( M  > V, ) solitons of coupled 
upper hybrid-magnetosonic waves. 

We finally consider the case when the low-frequency dispersion term in (45) is 
absent which is formally the same as putting p = 0. There are two different cases. 

( i )  When V’, - M’= 3Aa’//CLw~o the solutions are given by (47) and (48), with 

The quantities No and K are as in (49). The solitons in this case are compressional 
( N  Z 0) and  move with super-magnetosonic speeds. 

(ii) When V’, - M’ = 6Aa*/10pwH0 the solution for E( ,$)  is similar to that in the 
previous case with 

However, N ( 5 )  is qualitatively different from (48): 

where K = (--A/5D0)”’. 
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5.3. Integral invariants 

The time-dependent equations ( 4 1 )  and ( 4 2 )  admit a set of four exact integral invariants 
which can be explicitly evaluated for the different solutions obtained above. The 
invariants can be derived using the Lagrangian density 

1 

77- 
+-; [i@'+ 84, +: V$( 8, )'+f~'(8,)'+P'8,4, + $ @ ' $ ' I  + 8,EE* (59 )  

where 8, 4 and 4 are auxiliary variables, and 8, is to be identified as N ;  the subscripts 
x and t denote, respectively, the partial derivatives. The corresponding Hamiltonian 
(Z) and momentum (ir) densities are given by 

x 
E,EY+-  E E *  2e=- ( E * E ,  - E € : )  -- 

1 
7)- 

i Vg Do 
2VHO &WHO FWHO 

- -5 [{@' + 4 V x  N' + : a 2  N 7  + P' N N , ,  + $'( N ,  )'I - NEE* ( 6 0 )  

where 4 = 8,. The integral invariants are then defined by 
t X  - X  

I,= i r d x  I_. I # = {  X d x  

I E =  [ E E * d x  I N  = [ N ,  d x  

.. x- 

+ x T 1' 

J - x  J --I 
where lv is obtained directly from ( 4 2 ) .  

The invariants ( 6 2 )  can be explicitly evaluated for any of the  exact solutions obtained 
earlier. However, we present below the analysis for the solutions ( 4 7 )  and ( 4 8 )  which 
can easily be extended to the other cases. The algebra involved, though straightforward, 
is quite cumbersome but can be simplified drastically using the following procedure. 
Using (46)-(50), the integrands in ( 6 2 )  can be written in terms of powers of N only: 

2 = N + 5~' N'+ z7 N~ 
x =  ir, N +  ir,N' 

where the coefficients are defined by 
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Thus it is sufficient to evaluate the integrals of powers of N only. This can further be 
simplified by defining the definite integral: 

+X 

(65) 

where j is a positive integer greater than zero. Substituting the solution (48) into (65), 
one easily obtains the recurrence relation: 

S, N J  d x  
I ' J )  = 

where I " ' =  - ~ N , / K .  Using (66), we get 1 ' * ' = 4 N ; / 3 ~  and  I ' 3 ' =  - 1 6 N i / 1 5 ~ .  Com- 
bining (62), (63) and  (65), we finally obtain the invariants 

(67) 

I , =  -2NOq1/3~ (68) 

I E  = 2 E i / 3 ~ .  (69) 

By direct integration, one finds that the invariant I N  = 0. This is consistent with the 
fact that jTz N, d x  which represents the net rate of change of number density over the 
entire range should be zero as there are no sources or sinks in the system. 

2 No 
1 5 ~  

I x  = - - ( 15 21 - 10 NO22 + 8 N;%3) 

6. Summary and remarks 

The main results of the present work can be summarised as follows. Starting with a 
generic system of coupled non-linear ordinary differential equations, we have obtained 
their exact solutions containing as many as five free parameters. The problem is 
identical with the motion of a classical particle in a two-dimensional conservative 
potential and  our results establish the integrability of the system for a class of 
initial/boundary conditions. The generic equations are derivable from the time-depen- 
dent Schrodinger-Boussinesq (or Korteweg-de Vries) system which governs the non- 
linear development of the modulational instability of a class of high-frequency waves 
(like Langmuir, electromagnetic, upper-hybrid waves) coupled to appropriate low- 
frequency waves (like ion-acoustic, magnetosonic waves) in plasmas. As an  illistration, 
we have considered the case of coupled upper-hybrid and magnetosonic waves in 
magnetised plasmas and  have shown the existence of different classes of exact solutions 
for different ranges of parameters. We have also explicitly evaluated a set of four 
exact integral invariants for the relevant time-dependent equations. 

Finally, we make a few remarks about some of the questions that need further 
investigations. Firstly, the problem of obtaining the exact solutions valid in the entire 
parameter space is still open. Even the existence of such solutions has not been 
discussed so far. It is possible that strictly localised solutions exist only for some 
specific regions of the parameter space. Secondly, it would be interesting to look for 
exact solutions corresponding to more general initial/boundary conditions, for 
example, periodic solutions valid over larger parameter space than considered above. 
Thirdly, the method of solution used here can be tried with necessary extensions to 
other coupled equations like those found in relativistic quantum field theories [ 11. 
Fourthly, the stability [IS,  161 as well as the interaction [17, 181 of the stationary 
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solutions of the coupled Schrodinger-Boussinesq (or  Korteweg-de Vries) system can 
now be investigated using the exact invariants explicitly obtained in the present analysis. 

Appendix. Derivation of the generic equations from the Schrodinger-Boussinesq (or 
Korteweg-de Vries) system of equations 

As pointed out in 8 5, the generic equations (1) and (2) can be seen as the stationary 
form of the coupled Schrodinger-Boussinesq (or  Korteweg-de Vries) system. We 
present below the relevant details. 

Consider first the case when the Schrodinger equation is coupled to the Boussinesq 
equation: 

where E is a complex field, N is a real field and A ,  and  p,, i = 1,2,3,4,  are real 
parameters. In physical problems like the non-linear development of the modulational 
instabilities in plasmas [19], E(x,  t )  represents a field having a high-frequency carrier 
wave whose amplitude is modulated, and N ( x ,  t )  corresponds to the unmodulated 
low-frequency wave. For stationary solutions for E and N 

where ( = x - Mt is the stationary variable and M is the velocity of the stationary 
frame. The functions X ( x )  and T ( t )  are introduced to account for the shifts in the 
frequency and wavenumber of the carrier wave due to non-linearities. The real function 
E (6) represents the envelope of the carrier wave. 

Substituting (A3) into ( A l ) ,  we obtain from the imaginary parts 

which has the solution 

On the other hand, from the real parts, we obtain the following governing equation 
for the stationary envelope E ( & ) :  

(A6) A 2  d’E/d(’= AE + A4NE 

where 

1 
(A71 

A ,  
2A2 4A 2 

A = 6 +- ( M  - A l )  +- ( M  - A I ) ’ +  h 3  

and  S = d T / d t  is the non-linear frequency shift parameter. 
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Writing (A2) in terms of 6 and integrating, we get 

p2 d’N/dt’= -( M 2 +  p l )  N - p3 N’+ p 4 E Z ,  (A81 

If the Boussinesq equation (A2) is replaced by a (driven) Korteweg-de Vries equation: 

then (A8) is replaced by 

p2 d’N/d[’= ( M  - p l )  N - i p 3 N 2 +  p4E2. (A10) 

Equations (A6) and (A81 (or (A10)) are identical with the generic equations (1) 
and (2) when the coefficients are suitably redefined. 
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